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The correlation functions C, and C RE associated with the order-parameter field :ff(r,t) and its square,

respectively, are discussed using heuristic arguments and an approximate analytical approach. Topolog-
ical defects (walls, strings, monopoles) in the field, seeded by a quench from the high- to the low-
temperature phase, lead to singular short-distance behavior in the scaling functions, and power-law tails
in the corresponding structure factors. For superfluid helium, the structure factor S ¢z(k,t) is measur-

able in principle using small-angle scattering (whereas S, is inaccessible). It is predicted to exhibit a
power-law tail, ~[a*/L(¢)*)(Inka)?/k, where L (¢) is the characteristic scale at time t after the quench
and a is the core size of a vortex line. Correlation functions for the defect density are also discussed.

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

Traditionally, the major questions of interest in the
theory of phase-ordering dynamics have been the nature
of the growth law for the characteristic scale L (¢) and
the form of the scaling function f(x) for the two-point
correlation function of the order parameter field ¢[1].
For a scalar field, one has L (t)~t'/? or t!/* for noncon-
served and conserved fields, respectively, and, according
to the scaling hypothesis, the two-point correlation func-
tion has the scaling form [1]

Cy(r,0)=((x,0)p(x+1,1)) =f4(r /L (1)) . (1)

Although the validity of the scaling hypothesis has not
been rigorously established, it is supported by a wealth of
experimental and simulational data.

In contrast to C,, the correlation function for the
square of the field

Cpa(r,)= (x4 (x+1,1)),
= (X x,1)pXx+r,1))
—(dUx,t)){PHx+1,1)) )

has received little attention. The emphasis on C, is
readily understandable: C, [in fact its spatial Fourier
transform, the structure factor Sy(k,#)] is directly
measurable via small-angle scattering experiments.
Fourier transforming (1) gives

S4(k,t)=L ()% 4(KL (1)) , 3)

where d is the spatial dimension.

There has been much recent interest, however, in phase
ordering in systems for which the order parameter has a
continuous symmetry [2-9]. Such systems include
superfluid helium, superconductors, liquid crystals [6],
and any system described by a vector order parameter.
For superfluid helium and superconductors the order pa-
rameter is a complex scalar 1, which does not couple to
any physical probe. As a result, the usual two-point
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correlation function (¢*(x,2)¥(x-+r1,t)) cannot be mea-
sured. Rather, experimental probes couple to ||2. Since
the complex field can be expressed in terms of two real
fields, ¥=¢,+i¢,, the theory of a complex field is
equivalent to an n =2 vector theory. Furthermore,
small-angle scattering experiments then measure the
Fourier transform of the correlation function C # defined

by (2). It is therefore of interest to investigate the form of
C¢2.

While the precise form of the scaling functions f (x) is
not known, the general features are well understood. Of
particular interest is the short-distance behavior, since
this is reflected in the large-k, or “tail,” behavior of the
structure factor. By “short” distance, we mean r in the
range a <<r <<L(t), where a is the lower limit of the
scaling regime, set by the domain wall thickness, vortex
core size, etc. as appropriate. For a scalar field, the
sharpness of the domain walls [whose thickness a remains
fixed as L (#)— o] leads to the small-x behavior [where
x=r/L(t)] f4(x)=1—constXx+ ---. This in turn
implies the power-law tail, S,(k,t)~L (1) 'k ~“*1 in
the structure factor for k (L)t >>1 (but ka << 1), the cele-
brated ‘“Porod’s law” [10]. Very recently this result has
been generalized to vector fields, with the result [7]

S4(k,t)~L (1) "k ~d*m )

for kKL (¢t)>>1. Numerical simulation results [4,5,11] are
consistent with Eq. (4). We will show below how this re-
sult follows very simply from the idea that the relevant
topological defects in the field are responsible for the tail.

The principal new idea in the present paper is that the
correlation function C ¢2(r,t) also has interesting short-
distance behavior and is, in fact, more singular at short
distance than C,. In consequence, its Fourier transform
S ¢2(k,t) has a more pronounced power-law tail (i.e., with

a smaller power) than does S;. To be precise, we find

a’L (1) k9D (p=1) (5)
S ok, 1)~ a*L (t) n%*(ka)k 972 (n=2) (6)
a*L (1) "k ~4Tn =Y (5 52) 7
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for kL (¢t)>>1, provided n <d so that the relevant topo-
logical defects are present in the system. It will be in-
teresting to test these predictions through experiments
and numerical simulations.

A related question concerns defect-defect correlations
during phase ordering. If p(r,¢) is the density of domain
walls, vortices, strings, etc., as appropriate, then one can
define the density-density correlation function

C,(r,1)={p(x,t )p(x+r,t)), , (8)

where { ). indicates a “connected” correlation function,
as in (2). Related correlation functions, in which the de-
fect “charges” (or orientations, for extended defects) are
incorporated in the definition of the density, have recent-
ly been discussed by Liu and Mazenko [12]. Below we
will show that for scalar fields C, is closely related to
C £ We will also discuss the form of Cp for vector fields.

The paper is organized as follows. Heuristic argu-
ments for the tail behavior given by (4)—(7) are presented
in Sec. II. An approximate analytical treatment, based
on an approach originated by Mazenko [13], is given in
Sec. III, and yields expressions for C,, whose short-

distance behavior reproduces (5)-(7). Section IV con-
tains results for the defect correlation function C, for
both scalar and vector fields, and a comparison with the
results of [12]. The results are discussed and summarized
in Sec. V.

II. HEURISTIC ARGUMENTS

We now present the simple heuristic argument leading
to Egs. (4)-(7). To derive (4) we start from (3) and ob-
serve that, for kL (¢)>>1, one is probing distances short
compared to the distance L (¢) between topological de-
fects. Therefore one expects the structure factor in this
regime to be the sum of essentially independent contribu-
tions from different defects, or from parts of the same de-
fect separated by more than k ~!. It follows that S o(k,?)
should scale as the total defect density, i.e., as the
“amount of defect” per unit volume. For walls (n =1),
this is the wall area per unit volume, and scales as
L(#)~'. For vortices (d =2=n) or strings (d =3,n =2)
it is the number of vortices per unit area, or the length of
string per unit volume, respectively, both scaling as
L (t)"2. For monopoles (d =3=n), it is the number of
monopoles per unit volume, and scales as L (t)”3. In fact
for general n =d, the defect density scales as L (¢)”". Re-
quiring this factor for the ¢ dependence of S (k,#) when
KL (t)>>1 requires the asymptotic form g, (x)~x ~¢*"
for x — o in (3), and (4) follows immediately.

A similar argument can be used to derive (5) and (7).
The first step is to motivate scaling forms for C ; and S ,,

analogous to (1) and (3). To facilitate this we rewrite (2)
in the form

C¢2(r,t)=([1—¢2(1)][1—¢2(2)])
—([1—=X )]{[1—=¢*2)]) , 9)

where we have introduced the shorthand “1” for (r,?),
etc., and now r=r,—r,.

Consider first a scalar field. We can estimate
((1—¢?)) by observing that (1—¢?) vanishes except in-
side domain walls, which occupy a fraction of order
a /L (t) of space, where a is a measure of the wall thick-
ness. This gives ((1—¢?)) ~a /L (t). Therefore the anti-
cipated scaling form for (9) is

Cp(r,t)=a’L(1)72f p(r/L(1), (10)
while the corresponding form for the structure factor is
S¢2(k,t)=azL(t)d—2g¢2(kL(t)) . (11)

For kL(t)>>1 we again invoke the argument that S ,

should scale as the total wall density, i.e., as 1/L (¢).
This requires g¢2(x)~x ~@=1 for x — oo in (11), which
in turn implies (5).

For a vector theory, there is no well-defined “size’ of a
defect core: instead 1—¢>~a?/r? for r >>a, where r is
the distance from the defect (in the scalar theory, 1— @2
vanishes exponentially with »/a). Since the defect densi-
ty is of order L (¢)™ ", we estimate

(1= ~L )" [“Carr(a/r?

a’/L(t)?, n>2

a2[(InL ()]/L (1%, n=2, (12)

where the integration is over the n-dimensional subspace
orthogonal to the defect, and the upper cutoff at L (¢)
represents the limiting distance at which the defect field
can be taken to be undisturbed by other defects. The case
n =2, while of great physical interest, is complicated by
the appearance of the logarithm in (12), and its discussion
will be deferred for the moment. For n >2, (12) suggests
the scaling forms

C¢2(r,t)=a4L(t)_4f¢z(r/L(t)) , (13)

s¢2(k,t)=a4L(t)d‘4g¢z<kL<t>) . (14)

For kKL (t)>>1 the argument that S # should scale as the

total defect density, i.e., as L(#)™" requires
g p(x)~x —(d+n=4 for x — o in (13), which in turn im-
plies (7). The scaling forms (5) and (7) will be supported
by the approximate analytic treatment given below,
which also yields (6) for n =2.

We mentioned in the Introduction that the power-law
tails in k space are related to singular short-distance be-
havior of the scaling functions in real space. This will
emerge explicitly from the following analytic treatment.
For scalar fields, (5) implies the short-distance behavior
f¢z(x)~ 1/x for x —0 in (10). This also follows from the
analytical treatment given below and from direct intui-
tive arguments.

III. ANALYTIC TREATMENT

We will take the Hamiltonian of the system to have
usual Ginzburg-Landau form

H= [d%[LV$?*+V($)], (15)
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where the potential ¥ (¢) has the standard “mexican hat”
(sombrero) form, with ground-state manifold ¢*=1.

The essential idea, exploited by a number of authors
[7-9,12-14], is to express the field ¢(x,t), which varies
very rapidly near defects, in terms of a “smooth” field
mi(x,?). We will follow Mazenko’s suggestion [13,8,9] of
defining the function ¢(mi) by the equation

Vie="=, (16)

with boundary conditions #(0)=0 and &(m)—f
for |m|— oo, where M=mi/|m|. Since the equilibrium
field of a defect is given by 8H /8¢=0= —V2p+dV /0,
it is clear that, close to a defect, where the field is not
J

significantly disturbed by neighboring defects, mi(x,t) can
be identified as the position vector to the point x from the
defect (for point defects) or from the nearest part of the
defect (for extended defects). This identification will be
exploited in Sec. IV to simplify the calculation of defect
correlation functions. The key assumption of Mazenko’s
approach is that the field mi(x,#) can be taken to have a
Gaussian distribution. It should be emphasized that this
is an uncontrolled approximation, although there are in-
dications [15] that it may become valid in the limit
d — . Since we compute correlation functions involv-
ing only two different space points, we require only the
joint distribution function P(m(1),m(2)) of the fields at
points “1”” and “2.” It is given by [7-9]

1 1 m(1)? | m(2)*  2yni(1)-m(2)
P(ni(1),m(2))= — - s (17)
(mi(1),m(2)) N exp{ 2(1_,}/2) So(l) SO(Z) [SO(I)SO( )]1/2
[
where which is valid almost everywhere at late times. Then one
obtains, from (17), C¢=(241T)sin“‘('y). The generaliza-
tion to vector fields uses ¢~ at late times to obtain
So(H)=(m(1)?), S,(2)=(m(2)?), [7-9]
(m(1)m(2))
=— (18) =Ny |p|atl 1 1 1. n+2 ,
[So(1)S8,(2)]'72 C=5 1Bl 3 5 v, (19

N= 1
2m[(1—72)S,(1)84(2)]'72

where m (1),m (2) refer to a given Cartesian component
of the vectors mi(1), m(2), the different components of a
Gaussian field being independent. In this paper we will
be exclusively interested in equal-time correlations (al-
though the different-time results are a trivial extension),
so we will set S,(1)=S,(2)=S,. Furthermore, the
identification of m as a spatial position vector near de-
fects leads to the scaling [8,9,13] Sy ={(m?) ~L (¢)%. The
dependence on the spatial separation 7 of the points 1 and
2 enters through y, which is the normalized correlation
function for one components of the field m. In particular,
y=1for r=0,and y =0 for r = .

Mazenko has shown [13], in the context of the scalar
theory, how to exploit the transformation from ¢ to m,
and the distribution (17), to evaluate the correlation
function C o- Essentially, one uses the fact that, as far as
scaling properties are concerned, one can use ¢ ~sgn(m )I,

where B (x,y) is the beta function and F (a,b ;c;z) the hy-
pergeometric function. To determine y requires a
specific equation of motion. For the time-dependent
Ginzburg-Landau (TDGL) equation, d¢ /3t =—8H /8¢,
the Gaussian property of m can be exploited to determine
a closed equation for the function y(r,z). Within the
simpler theory of Ohta, Jasnow, and Kawasaki (OJK)
[14], and its generalization to vector fields [7], ¥ is simply
given by y =exp(—r2/2L?), with L ~t!/2. As far as the
short-distance properties of C, are concerned, the impor-
tant point is that 1—y?~r2/L? for r <<L: the leading
short-distance singularities in C follow from the singular
(for y —1) dependence of C, on y implied by (19) [7-9].
We now apply these same ideas to the calculation of

C¢2.

A. Scalar fields

In terms of the m field one has

([I=¢*D[1—¢*2)]) = [dm (1) [ dm (2)P(m(1),m (2))[1—¢*(m(1)][1—¢Xm(2))] . (20)

The function ¢(m) is a sigmoid function which ap-
proaches X1 exponentially fast for m —+ « [e.g., for the
¢* potential, V(¢)=(1—¢?)>/4, one has ¢(m)
=tanh(m /V'2)], with a “width” equal to the domain-
wall width a [from (16), ¢(m) is just the domain-wall
profile function]. On the other hand, the probability dis-
tribution P(m (1),m (2)) varies slowly as a function of its
arguments, on the scale of the domain length L ().
Therefore this latter factor may be taken outside the in-
tegral in (20), and evaluated at m (1)=0=m (2), because

[
the [1—¢%m)] factors converge the integrals. This
gives, in the scaling limit,
([1=¢*D)][1—¢*(2)]) =a?P(0,0)
2
=const X —2 3
t)
X —1 @D
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where we used (17) (with n =1) for P(0,0). The factor a?
in (21) arises from the convenient definition
/e dm [1—¢?(m)]=a for the width of a wall. The fac-
tor L comes from the factor SJ’ in P(0,0), since
So~L (t)z. The second term in (9) is generated by setting
¥ =0 in (21), which corresponds to the limit r/L — 0.
This gives the connected correlation function (9) as

~a?/L (k%! for kL (t)>>1, which is (5). A heuristic
derivation of (23) will be given below.

B. Vector fields, n >2

The analog of (19) for vector fields can be written down
immediately, by letting ¢—>¢ and m —m everywhere.
The crucial difference now, however, is that ¢2(m) no

22 1 longer approaches unity exponential fast for |mi|— oo,
C ,(r,t)=const X —1 (22) but as a power law [8]:
’ L@®?* | (1=yH'7 -
1—¢m)=~a?/|m?, |mM?—>o, (24)
For r <<L, 1—y?~r2/L? gives
where (24) can be taken as a convenient definition of the
a2 “core size” a for a defect in a vector field. The result (24)
C ¢2(r,t)~ O’ a<<r<<L(t). (23) can be derived explicitly by inserting the radially sym-
Or metric solution ¢(m)=m¢(|m|) into (16) and solving for
the asymptotic behavior of the profile function ¢(x) (see,
Fourier transforming this result gives S ¢z(k,t) e.g., [8]). Inserting (24) into (20) gives
J
([1—52(1)][1—$2(2)]>=a4fd1ﬁ(1)fdrﬁ(z)P(ﬁ(l),ﬁ(z))lxﬁ(1)|—2|rﬁ(2)|‘2 . (25)

To justify the use of the asymptotic form (24) in (25) we
have to argue that the mi integrals are dominated by
values of |m(1) and |m(2)| that are large compared to the
core size a. However, this is clearly so, because (in con-
trast to the scalar theory) the convergence of the integrals
at large |m(1)|, |m(2)| is controlled by the factor
P(mi(1),m(2)). This varies with |mi(1)],|m(2)| on the
scale of the characteristic length L (¢), which is asymptot-
ically much greater than a.

The case n =2 is special, because the integral (25) is
then divergent for small |m(1)|,|m(2)|, and it is no
longer permissible to use (24) in the integrand. We will
return to this interesting case below.

For n >2, the integral (25), with P(m(1),ni(2)) given
by (17), may be evaluated by standard techniques similar
to those employed in the evaluation of Cy in [7-9]. In
short, one employs the integral representation
lrﬁ(i)|_2=fg’du,-exp[——u,-rﬁ(i)z] (i=1,2), carries out
the Gaussian integrals over mi(1),m(2), before evaluating
the final integrals over the auxiliary variables, u,u,.
The result is

4
1

([1— 1—-622) ) =% ———F(1, ;n/2;9?) .

[1—¢XDI[1—¢x2)]) s3(n—2) n/2y
(26)
J

(a/LY(1—yH)n =972 2<n <4
Cplr,t)~ —(a/L)In(1—9?%), n=4

(regular terms)—+(1—y2)"

For even integers n, where the factor (1—y 2)(n=4)72 e
comes regular at ¥y =1, an additional logarlthmlc factor
In(1—y?) appears, as shown exphcltly in (29) for n =4.

In Fourier space, (1—y 2y~p2/L?% for r<<L implies,
for all n > 2, the power-law tail

~4/2% (regular terms),

{

Using once more Sy~LZ%~t, and subtracting the ¥y =0
value (corresponding to » = « ) to generate the connected
correlation function, we obtain the final result

4 1
C ,(r,t)=const X

a
@1 r(1ns2yh—1) .
¢ LF (n—ayp FLLn/ZyI—1]

27

For the special case n =3, the hypergeometric function
simplifies to F(1,1;3/2;7%)=sin" (y)/y(1—yH)1/2

In this paper we are especially interested in the behav-
ior of the Fourier transform S ¢2(k,t) at large kL. This is
related to the short-distance behavior of the real-space
scaling function. For example, for n =3 one obtains, for
vy—1,

C 2(r7t)~

s (a/LYH(1—y?

)"V2~(a /L)L /7) ,

a<<r<<L (n=3). (28)

For arbitrary n > 2 this generalizes to

(29)
n>4.

|
S¢z(k,t)~a“L(t)‘"k"“H"_‘” (30)

in the structure factor, in agreement with (7). The factor
L ™" is in accord with our physical argument that the
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structure factor should be proportional to the defect den-
sity.

C. Vector fields, n =2

For this special case, (25) can no longer be used, as the
integrals diverge (logarithmically) at small |mi|. To loga-
rithmic accuracy, we can simply cut off the divergence at
the core size a. A more sophisticated approach would
employ a “soft cutoff,” e.g., one could replace the factors
|m| ™% in (25) by (m2+a?)”! At the level of the leading
logarithms, however, the result is independent of the way
the cutoff is introduced. The analog of (26), derived in
the Appendix, is

(1= D[1—822)])

a
L

2L /a1 —y2)
1——72

=const X (31)

The connected correlation function is obtained, as usual,
by subtracting the ¥y =0 value to give

a 4[1n2{(L/a)2(1—y2)}

C ,(r,t)=const X a 5
I—y

4

—In?{(L /a)*} } . (32)

Note that this does not have a conventional scaling form.
In the ‘‘short-distance” limit of interest, we use
(1—y2)~r%/L? once more to obtain

a* 1n¥r/a)
L(2)? r?
In k space this result takes the form
a* In*(ka)
L 2 kd 2
provided d >2. For d =2, one obtains

C¢z(r,t)~const>< (33)

S (K, 1)~ (34)

4
S¢2(k,t)~—%7ln3(ka) d=2). (35)

We emphasize that these results hold only in the scaling
regime, defined by ka <<1<<L /a, in the limt kL — oo.

IV. DEFECT CORRELATION FUNCTIONS

Defect correlation functions have recently been dis-
cussed in detail by Liu and Mazenko (LM) [12]. In this
section we present a simpler and more general derivation
of their result for scalar fields, and obtain some additional
results, for scalar and vector fields, by making a physical-
ly motivated simplification.

A. Scalar fields

For scalar fields one can define a local domain-wall
density

p(r,t)=8(m(r,)))|Vm(r,1)| , (36)

where |Vm| is the Jacobian which correctly normalizes

the 8 function. The mean wall density scales as 1/L (2),
with a coefficient that has been estimated in [12]. Here
we investigate the correlation function

C,(12)={p(1)p(2)).
=(8(m (1)8(m2N|V,m(D| [V,m ()., (37

in an obvious notation. In (37), the subscripts ¢ indicate
connected correlation functions as before.

As LM comment, the full correlation function (37) is
difficult to evaluate because of the modulus signs on the
Jacobians. Instead, they consider a different correlation
function that is sensitive to the orientations of the walls,
namely,

G,j(12)=(8(m(1))[8}m(1)]8(m(2))[8§m 2)1» . (38

LM evaluate the average by taking m to be a Gaussian
random field as in Mazenko’s theory of the function C¢,
and thereby relate G;; to a second derivative of Cy. Here
we show that the same result may be derived more simply
as follows. Consider the function

C,;(12)=([3}¢(1)][334(2)]) . (39)
This can be written in terms of the field m as
=([a! 19& 2 d¢(2) >
Cij(12) <[3,m(1)] dm ( [a 2)] Tm (2] ]

(40)

However, the function ¢(m) is a sigmoid function, vary-
ing between —1 and +1 as m goes from — o to + .
Therefore d¢/dm is sharply peaked around m =0. In
the scaling limit it may be replaced a delta function,
d¢/dm ~26(m). This gives

G,;(12)=(1)C;;(12)=($)3}32C4(12) (41)

since the derivatives can be taken outside the average in
(39). Noting that Cy(12) depends on ry,r, through

r=|r,—r1,|, the derivatives in (41) can be evaluated to
yield

(6, )=Gp (r,tRE,+Grlr,(8; %%, , (42)
where

G (r, t)—~li—c¢(r 0,

Gotr e — 13 (43)

rirt)= ar or

are the longitudinal and transverse parts of the correla-

tion function. These results are identical to those

presented by LM. However, the derivation is more gen-

eral as it does not rely on the assumption the field m (r,?)
is Gaussian.

Turning to the “full” correlation function (37), it seems
that no such simple treatment is possible. Of course, C,
can be evaluated if one approximates m by a Gaussian
random field, but the calculation is still rather involved.
We suggest, instead, that the Gaussian approximation be
taken at a later stage in the calculation. That the true

C¢(r,t)
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field m, defined by Eq. (16), cannot in any case be precise-
ly Gaussian (except for d = oo ) has been noted before [9].
The point is that, close to a wall, m has precisely the
meaning of a coordinate normal to the wall. This means,
therefore, that |Vm|, evaluated on a wall, is just unity,
and may be taken outside the integral in (37). If one now
makes the Gaussian approximation, the result is just
1 1

(p(1)p(2))=P(0,0)= 278y Iy ° (44)

Subtracting off the large-distance limit to obtain the con-
nected correlation function, and using Sy~ L (¢)?, gives

1
L(t)?

1
(1_72)1/2

Cp(r,t)=const>( —1 (45)

Comparing this result with (22), we see that C, has the

same form (apart from a factor a?) as C £ The reason is

clear: (1—¢?) is only nonzero within a wall and therefore
measures, essentially, the wall density. The short-
distance behavior of C o is analogous to (23), i.e.,
C,~1/rL(t). The intuitive argument for the 1/r depen-
dence, promised in Sec. II, is as follows. Consider two
points 1 and 2 separated by r. The probability that point
1 lies in a wall is of order a /L (t), which is the volume
fraction occupied by walls of thickness a. For r <<L (1),
the second point 2 can only lie in the same wall. A ran-
domly chosen point 2 a distance r from 1 will lie in the
wall with a probability of order a /7, since this gives the
fraction of points of radius » centered on 1 that lie in the
wall, provided »>>a. Therefore, the probability that
both points lie in a wall is of order a?/rL (¢). Since the
function C_ is defined in terms of densities, rather than
total probabilities, the factor a? is absent from (45).

B. Vector fields

The cases n =d (point defects) and n =d —1 (line de-
fects) have already been considered by LM, who calculat-
ed the defect density-density correlation functions, in-
cluding the defect ‘“charges” (point defects) or orienta-
tions (line defects) in the definition of the defect density
p(r,t). Here we consider the “full” density-density corre-
lation functions, defining the density at point 1 as

p(1)=8(m(1))]J(1)] , (46)

where J is the Jacobian [of the transformation from the
coordinate r to the field m(r)] required to correctly nor-
malize the 8 function. The corresponding correlation
function Cp(12)=<p(1)p(2)>c is readily calculated for
any n =d by using the same procedure as for the scalar
theory. This means treating the Jacobian exactly, by
recognizing that the identification of mi, close to a defect,
as a position vector in the plane normal to the defect (or a
position vector from the defect for point defects), means
that |J|=1 exactly, at defects. To show this explicitly,
one simply sets up an orthonormal coordinate system at
each point of the defect structure, with the » components
of mi serving as coordinate axes normal to the defect, and
another d —n axes lying in the defect. Since |J|=1 at a
defect, the Jacobian factor can be dropped from (46), to

give the remarkably simple result
(p(1)p(2)) = (8(mi(1))8(m(2))),
=P(0,0)(y)—P(0,0)(0)
1" 1 _
278, (1—y2)n/2

1 ] . (47)

Only at the final stage has the Gaussian approximation
(17) been used.

The short-distance behavior follows from 1—y?
~r?/L?for r << L. Inserting also S, ~ L? gives
Co(r,t)~(Lr)™", r<<L, (48)

a simple generalization of the result for scalar fields.
Again this form is easy to understand intuitively, at least
for extended defects. Consider choosing points 1 and 2 a
distance r << L apart. The probability that point 1 lies in
a defect scales as L ~". The dominant contribution to C o
for r << L arises from cases where point 2 lies in the same
defect. The fraction of points distant r from 1 which
satisfy this condition scales as r~". This gives
C,~(Lr)"" for r <<L. Essentially the same argument
has been given by Mondello and Goldenfeld (MG) for the
special case d =3, n =2, and their numerical simulation
results confirm the prediction (48) for this case [5]. Of
course, this argument does not apply to point defects.
The prediction (48) is presumably spurious for point de-
fects, an artifact of the Gaussian approximation used for
m.

C. Comparison with simulation data

A detailed comparison of (47) with the simulation re-
sults of MG [5] for d =3, n =2 is also possible. MG plot
the  string-string  correlation  function I'g4(12)
={(p(1)p(2)) /{p)? which is normalized to unity at
large separations. Equation (47) gives Dgg=(1—p%)"L
The “OJK” expression [7-9] ¥y =exp(—r?/8t) can be
rewritten in terms of 7, ,(#), the scale at which C; =1, as
y~exp(—r2/2ri,) (since r;,=~2.0t'? in the OJK
theory [9]). MG, on the other hand, use r /d () as scaling
variable, where d(¢) is another measure of the scaling
length, defined by {p)=d (¢+)~2. MG find (as expected, if
scaling is true) that r, ,(¢) and d (¢) grow in the same way
[16], with d ~1.4r,,,. Therefore ¥ can be written as
y ~exp(—0.98r%/d?), giving g~ {1—exp(—1.96r2/
d?)} 7. This expression fits well the general functional
form of the data. However, a quantitative fit requires
that the factor 1.96 be replaced by a much larger number,
around 4.6. (Using the “Mazenko” result for y [8,9] in-
stead of the simple OJK form makes no appreciable
difference to the fit.) This is another indication of the
limitations of the Gaussian approximation, especially at
short distances which dominate the fit to T'gs.

It is interesting that the ratio d (¢)/r; ,(t) can also be
determined directly from the theory. First of all, ¢ p) can
be read off from (47) as {p) =(27S,) ! [or, for general n,
(p)=(2mS,)~"/?] since the prefactor in (47) is just {p )2
Next, allowing for the factor of V2 difference in the
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definition of mi [via (16)] between this paper and [9], Sy(¢)
can be written as S, =2t /A, where [8,9] A is the exponent
related to two-time correlations. This gives {p) =21 /4mwt,
and d(1)=(4wt/\)"/2.  Now using, as before,
71,,~=2.0t'2, gives the ratio d(t)/ry,(t)=~(m/M)'/2
Using the OJK value [8,9] A=d /2 gives d (t)/r,,;~1.45
for d =3, quite close to the value determined numerically
(=~1.38 [17]). Using the value from the Mazenko theory
(8,9], A=1.38, would give d/r;,,=~1.5. For d =2, the
OJK value A=d /2 gives d (t)/r,,=1.77, the value from
the Mazenko theory, A=0.83, gives d(t)/ry,,=1.95,
while the MG simulations [4] give =~2.0 for this ratio
[17].

It is worth noting that the average string density (p)
can also be calculated by retaining the Jacobian |J] in (46)
and using the Gaussian approximation for mi immediate-
ly. This approach was used in [12], and gives
(p)=A/6mt and A/87t for d =3 and 2, respectively,
smaller by factors 2 and 1, respectively, than our result.
This leads to a ratlo d /r1 ,» Which is larger by factors
(3/2)1/2=1.22 and V2, for d =3 and 2, respectively,
than those derived above, i.e., significantly further from
the simulation results. It seems, therefore, that replacing
the Jacobian in (46) by unity before invoking the Gauss-
ian approximation for ni gives more accurate results.

We end this section by stressing that dimensionless ra-
tios like d(¢)/r,,,(¢) should be universal numbers—the
time dependence cancels out, taking with it any unknown
factor relating time scales in the theory and the simula-
tions. Such dimensionless ratios are valuable as absolute
tests of approximate theories.

V. DISCUSSION AND SUMMARY

In this paper we have discussed the form of some
higher-order correlation functions in the phase-ordering
dynamics of a nonconserved field. Specifically we have
studied the two-point function for the square of the order
parameter, C £ and the two-point correlation function

for the defect density, C,. We have emphasized, in par-
ticular, the short-distance behavior, which can usually be
extracted using heuristic arguments. Inasmuch as these
arguments do not depend on the details of the underlying
dynamics, e.g., whether the order parameter is conserved
or nonconserved, but are determined by the structure of
individual defects, the short-distance results (23), (29),
(33), and (48) should be valid quite generally, as should
the corresponding results (5)—(7) for the tail behavior of
the structure factor S ,(k,z). In particular we note that
S # has a more slowly decaying tail than that of the con-
ventional structure factor S, associated with the order-
parameter field itself.

These calculations have particular relevance to the or-
dering dynamics of superfluid “He, where the usual struc-
ture factor S ¢ cannot be measured, even in principle. In-
stead, small-angle scattering experiments, e.g., light
scattering, measure S 2 While this is not an easy experi-
ment, due to the very weak coupling of light to the
superfluid density, resulting in a weak signal, it may still
be feasible. The tail is predicted to have the form (34)
(with d =3) for scattering from a bulk superfluid, and

(35) for a film. It should be noted that these forms exhibit
a much slower fall-off with momentum transfer (or
scattering angle) than the corresponding results for the
usual structure factor S,.

The seeding of a “vortex tangle,” which subsequently
coarsens, by quenching *He into the superfluid phase has
been suggested [18] as an analog for the production of
cosmic strings in the early universe, induced by the pro-
posed symmetry-breaking phase transition in accordance
with the Higgs-Kibble mechanism. This analogy pro-
vides an additional incentive for performing the experi-
ment. In practice, the quench into the ordered phase
could be conveniently achieved by cooling the system un-
der pressure to just above the A line, then crossing the A
line by releasing the pressure. This would be both quick-
er, and more convenient, than a direct temperature
quench.
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APPENDIX

In this appendix the integral (20) is evaluated to lead-
ing logarithmic accuracy for » =2. To this end it is con-
venient to use (25) with an implied lower cutoff at the
core size a. In practice, it is convenient to use, as before,
the integral representation |m| ?= [ *du exp(—um?)
and to introduce the cutoff as an upper cutoff on the auxi-
liary integrations, at u =1/a?. After the change of vari-
able u —u /28, one obtains
([1—¢% 1)][ —¢%2)])

25, /a 25,/a?
L a5 : :
4S 1+u+v+(1—y2u
(A1)
The dominant contribution to the integral comes from
both u and v near the upper limit. Therefore we can drop
the 1 in the denominator of the integrand. Rescaling
u—(2S,/a*)u, and similarly for v, gives

([1=¢2(D][1—¢%2 ]>

230 f

fo u+v +[J’uv (A2
where

B=(1—y%)2S,/a* (A3)
Recalling that S,~L?2, we have S— o in the scaling
limit. Straightforward asymptotic analysis of the integral
(A2) in this limit gives

2 anB
([1—¢AD][1—¢*2)]) ~ 2 2F
[1—¢*(D][1—¢*2)]) 25 B
a* > ((1—y>)L /a)*}
L* 1—y? ’

(A4)
which is (31).
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